PHYSICAL REVIEW E VOLUME 54, NUMBER 6 DECEMBER 1996

Chaotic scattering through potentials with rainbow singularities
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We investigate chaotic scattering in a family of two dimensional Hamiltonian systems. The potential in
which a point particle scatters consists of a superposition of a finite number of central force potentials. Each
central force potential is either attracting without any singularity, or attracting at long distances with a repelling
singularity in the center motivated by potentials used in molecular interaction. The rainbow effect obtained
from scattering in one such potential causes the chaotic scattering, and we show that for these systems there
exist regions in the parameter space where the repelling sets are complete two dimensional Cantor sets of
different type. We define symbolic dynamics and calculate periodic orbits for these systems and determine the
classical escape rate and the quantum mechanic resonances using the zeta-function formalism. We examine the
systems with two, three, and four attracting Gaussian potentials and two Lennard-Jones potentials.
[S1063-651%96)11412-4

PACS numbd(s): 05.45+b, 03.80:+r

[. INTRODUCTION has a Cantor set structure. The symbolic dynamics we intro-
duce must be the starting point for defining symbols also for
Chaotic scattering is a problem that has received mucimot complete repellors of this type. The symbolic dynamics
interest in the last decade. The structure of classical trajectantroduced in[12] does not distinguish different orbits and
ries in these scattering problems has been investigated amannot be used to label periodic orbits.
guantum mechanical scattering using both semiclassical In a chaotic system there are two mechanisms acting on
methods and exact quantum mechanics methods has beggjectories: a dispersing mechanism of neighboring trajecto-
examined. The most popular models have been billiard probries giving a sensitive dependence on initial conditions and a
lems, where a particle moves on a two-dimensional plango|ding of trajectories that have moved far away from each
and bounces elastically from some number of walls. Theyther such that they again move close. In attracting potentials
Lorentz gag1] and the Sinai billiard2] are infinite systems e may obtain this dispersing and folding mechanisms from
of this type. A model for chaotic scattering in a finite region the \vell known rainbow effect in a central force potential
and then escaping was introduced by Eckhardt, ttiree- f[13]. A central force potential that is attracting without an
disk systemwhere the particle scatters from the borders o qeitttracting singularity or a potential attractive for large dis-

three disks in the plane. This may_be the S'T“p'GSt physic ances and repulsive for short distances has a deflection func-
example of a chaotic scatterer and is the subject of a numb%ron such that more than one incoming trajectdippact

of investigationg3—8]. For sufficiently separated disks the Raramete)r yields the same reflected angle of the particle

chaotic repellor has a complete Cantor set structure, whic . o f . .
P b édeflectlon angle This gives the folding of trajectories. Tra-

simplifies the classical and semiclassical discussion. Th . e
hard disks in this problem can be replaced by smooth repe'_ectorles sufficiently far away from the extremum value of

ling potentials[9], and this model can also give a similar the deflection function have the property that neighboring
type of chaotic repellor. trajt.ec.tques dls'p.erse and then give the sensitive dependence
Attracting potentials may also yield a chaotic scatterefon initial conditions. A combination of two or more such
and an example for a scatterer of this type has been intrg:entral force potentials may therefore give rise to chaotic
duced by Troll and Smilanskj10,11]. This system consists Scattering. As we show below this analysis is also valid for
of an infinite array of potentials with a finite range where thecomposed potentials where the different central potentials
potentials do not overlap each other and each potentigiverlap. The extremum point of the deflection function cre-
changes the direction of the particle in a linear way. Thisates bifurcations and stable orbits in these systems.
model yields a repellor with a Cantor set structure. Scattering We discuss here model systems, each consisting of a po-
through a double well potential has been studied by Danielgential that is a superposition of a finite number of central
Vallieres, and Yuaril2] and their system shows some simi- attracting potentials with and without a repelling singularity.
larities with the systems described below. This paper deThe potentials are apparently similar to the three-disk repel-
scribes the cases where the double well types of potentialsrs but the repelling set has a different and much richer
structure. We show that for certain areas in the parameter
space we can obtain a repellor with a simple Cantor set struc-
*Present address: NORDITA, Blegdamsvej 17, DK-2100 Copenture, and we discuss the transition between these simple re-
hagen @, Denmark. Also at Physics Department, University ofpellors. We introduce a symbolic dynamics to enumerate the
Oslo, Box 1048, Blindern, N-0316 Oslo, Norway. Electronic ad- orbits and give methods to find orbits numerically. For the
drTess: k.t.hansen@fys.uio.no simple repellor cases we calculate classical escape rates us-
Electronic address: ako@phyc1l.physik.uni-freiburg.de ing the thermodynamical zeta function and we make some
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FIG. 1. The three-Gaussian potentials in they] plane with parameterg,=0.1,a=1, and(a) R=2.5, (b) R=8.0.

semiclassical calculations and obtain quantum mechanicalll such singular orbits yields the method to control the to-
resonances. pological structure of the chaotic repellor.

This model is motivated by problems in atomic and mo- We obtain the symmetric three-Gaussian system by
lecular physics where attracting potentials of this type arehoosing three potential®) with (x;,y;) as the corners of a
typical. A repellor consisting of only attracting Coulomb po- regular triangle with distanceR between the centers
tentials yields a completely different systdib¥] and it is  x,=x,=y3=0, x3=— 3R/2, y;= —R/2, y,=R/2. The pa-
essential for our discussion that we have a potential withoutameters of the system aR, V,, a, m, and E. We will
an attractive singularity. We have chosen Gaussian potentialgssume below, if not otherwise stated, thatm=1 and
for the attracting case and Lennard-Jones potentials for theozo,]__ We have chosen this as our main example and most
singular scatterer, but other potentials with a similar structurgumerical results are given for this system. This example
will not change much in our results. The main result we wantjjustrates the general techniques we use and new examples
to focus on is the topological structure of the chaotic scatcan be worked out using the same methods.
terer, which in many cases does not depend sensitively on |n Fig. 1 the three-Gaussian potential is drawn for two

the exact shape of the potential. different distancesR, between the disk centers. In Figal
the distance is smalR=2.5, and the three potentials form
Il. DEFINITIONS one big well with three minimum points. In Fig.(d the

potential consists of three separated wells ViRth 8.0. Even

The Hamiltonian describing the motion of a particle on Aif the potentials look very different the dynamics may have

plane is the same topological structure choosing a proper energy, and
p2  p2 since the latter system is simpler to analyze we will start the
H= -2+ —y+v(x,y), (1) discussion in the asymptotic limR/a>1 where the three
2m  2m Gaussian potentials are far from each other and the particle

whereV(x,y) may be a smooth function or for billiard sys- moves nearly as a free particle between two Gaussian wells.
tems a d,iscontinuous function of and y. We choose To simplify the discussion we enumerate the three Gaussians
V(x,y) to be a superposition of some finite number of attrac-counterclockwise as indicated in Fig. 1 and denote them
tive Gaussian potentials Gaussian 1, Gaysman 2, anq Ggu_ssmn 3. . _
A two-Gaussian system is similarly defined wixh=0

(X—X;) 2+ (y—y;)? and y;=*R/2 and we have also studied a four-Gaussian
2 (2)  system withx;=+R/2 andy;=*R/2. We investigate the

two Lennard-Jones Hamiltonians withx;=0 and
or Lennard-Jones potentials with a repelling singularity ~ Yi= = R/2. Figure 2 shows this potential for the parameters
A=1,B=3, andR=10.

Vi(x,y)z—Voexr{ - a

Ay Bo
[(x—=x)2+(y—y)Z® [(x—x)2+(y—vy)? lIl. ASYMPTOTIC CANTOR SET REPELLORS
©)

Vi(xiy):

To discuss the limiR/a>1 we assume that each single
When we let a particle pass through one such potential weotential vanishes at a distanbg,,<R/2 from the center of
obtain a deflection function with a rainbow effect for somethe potential. This is practically true for the parameters we
outgoing angle. It turns out to be essential to control thehave used in Fig. (b). Then the particle moves freely be-
trajectory moving along the path giving the rainbow singu-tween the single potentials and we can investigate the motion
larity and we will refer to this trajectory assngular orbit  through one single Gaussian potential independent of the
through the Gaussian or Lennard-Jones potential. Controllingther Gaussians. The scattering through a single Gaussian is
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stable orbits and a complicated system. We will therefore
first investigate the case where a trajectory algngescapes
immediately from the system.

A. 2x 2 Cantor set

For the three-Gaussian system in Figh)lwith ¢, well
below 120° there are no trajectories that are captured in the
system. Any particle from outside or starting somewhere in-
side the system will escape as a free particle after having
scattered in at most two Gaussian potentials.

The situation is very different if we choose a smaller en-
ergy such thatp. is somewhat larger than 12dthe exact
value is discussed belgviout well below 180°, for example,
Fig. 3 with ¢p.~150°.

First we make a simplified discussion to illustrate this; let
a trajectory from Gaussian 1 in Fig(l scatter counter-

FIG. 2. The two Lennard-Jones potentials in they) plane  clockwise in Gaussian 2 and obtain a deflection angle such
with parameter#\o=1, Bo=3, andR=10. that it reaches Gaussian 3. The critical trajectory that scatters

counterclockwise with the anglg, will bend more and pass

described by finding the deflection angle as a function of thaomewhere between the Gaussian 1 and Gaussian 3 where
impact parametdrl3]. In Fig. 3 the deflection angle is given the potential is 0, and will consequently then escape as a free
for E=0.024 and the deflection angle reaches a maximum oparticle. There are two intervals of the impact parambetir
minimum value = ¢. for some critical impact parameter Fig. 3, one on each side of the critical impact parameter
*+ b, where the cross section becomes infinite. As the energlg., in which trajectories hit Gaussian 3 and can continue
decreases this maximurgminimum) value increasesde-  scattering in the system. This creation of these two intervals
creases We restrict our discussion to energies where thisis the essential point. We can now repeat the same argument
maximum value remains finite. for the trajectories in each of these two intervals; in each

We want to study the classical chaotic scattering and fointerval there will be one critical trajectory counterclockwise
the quantum mechanical system only describe the resahrough Gaussian 3 escaping between Gaussian 1 and Gauss-
nances. We are therefore not directly interested in the crodan 2 and two intervals reaching Gaussian 1. We have then
section itself[15], but only in the part of the cross section obtained four intervals in our initial positions of trajectories
that hits a new attracting potential. Only trajectories in thisfrom Gaussian 1 and all trajectories in these intervals scatter
part can give contributions to the chaotic dynamics and tan Gaussian 2 and Gaussian 3 and return to Gaussian 1. Re-
resonances in the quantum mechanical system. The cropgating this argument infinitely many times we get a Cantor
section will change a lot with the incoming angle while the set of trajectories remaining in the system forever. The orbits
resonances are fixed quantities independent of the directioill be unstable as long as the slope for the function in Fig.
Which impact parameters give trajectories remaining in thes is sufficiently steep in the relevant intervalshof
system depends on the position of the potentials in the plane, The argumentation above gives the correct idea of the
on ¢, which is a function of the enerdy, the massn, and  dynamics, but our system is a Hamiltonian with two degrees
the parameters of the potentisly anda. of freedom and has to be discussed in a two dimensional

If a trajectory along the critical deflection anglé. Poincaremap. It is natural to choose a Poincanap reflect-
reaches a new potential, then there is a possibility to haveng the symmetry of the problem and we choose as a Poin-

180.0 — . x 2100
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90.0
60.0
- 30.0
0 0.0 ¢
L ~30.0
—60.0 I
~90.0
~120.0 1500
~180.0 22100 T e
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FIG. 3. The deflection anglé in degrees as a function of the impact paramdéidor one single Gaussian potenti@) for a=1,
V(=0.1 and the energi=0.024.
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caremap the crossing of the trajectory with one of the linesconstruction of the Cantor set repellor.
from the midpoint in the triangle=0, y=0 going between To get the next generations in the construction of the Can-
any two Gaussians; that is the three lines indicated in Fig. 1tor set repellor we just repeat the argument for each of the
y=0 for x>—R/\12, y= =+ ({3x+R/2) for x<—R/\/12.  four rectangles in Fig. @), scattering twice forward and
As the abscissa in this Poincameap we choose the position twice backward yields 16 rectangles. In Figcjwe have
on the symmetry line, which we denote for simplicity also by drawn the points not escaping after two iterations forward in
x and se=0 at the midpoint between two Gaussians and agime. This yields a twice folded horseshoe. In Figd)4the
the ordinate we choose the momentum in thiglirection, 16 rectangles of orbits not escaping after two scatterings for-
Py - ward and backward in time are drawn. Three scatterings

As a numerical experiment we scan the starting points ofield 64 rectangles and so on. In the lirRit- the repellor
the Poincareplane and plot only the points that scatter athas this topological structure for 128%.<180°. We will
Gaussian 1 and then arrive close to Gaussian 2. This is doriefer to this repellor as the>22 Cantor set
in Fig. 4@ and we find an area similar to the well known A symbolic dynamicslescription of the Cantor set is de-
Smale horseshoe m@p6). In the Poincarelane there is one termined by labeling a point in the Poincaptane in the
connected curve of starting points yielding the critical de-upper right fold of the horseshoe in Figa#s=0, and in the
flection in the first Gaussian as indicated in Figa)4and lower left fold s=1 as indicated in the figure. Thes+=1
these give the primary turning points of the horseshoe foldcorresponds to the fact that the particle will be scattered in
ing in the asymptotic limit. To construct the two dimensional the next Gaussian along a trajectory closer to the center of
Cantor set we also have to follow the trajectories backwardhe Gaussian than the critical trajectory and we call this an
in time. In Fig. 4b) the points reaching a Gaussian afterinner bounce For s=0 we have arouter bouncea trajec-
having scattered both once forward in time and once backtory outside of the critical trajectory. Any trajectory in the
ward in time are plotted, and we get four areas, which argepellor is uniquely determined by a bi-infinite symbol string
called rectangles, in the Poincastane.

What is important here is that there are always critical ©-S-180°8182 -, S {01 (4)
trajectories from the Poincapane reaching a new Gaussian
but only forward in time or only backward in time. There is where the symbols to the right and to the left of the dot
no point giving a critical trajectory reaching a new Gaussiandescribe the scattering forward and scattering backward in
both forward and backward in time; the trajectory scatteringime. We use the convention that a line above a symbol
along a critical trajectory forward in time will escape back- string denotes an infinite repetition of the string. Periodic
ward in time and visa versa. This is the essential part in ouorbits are written as;S,- - - S,=(S1S," - - Sp)”~.
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FIG. 6. Periodic orbits of the three-Gaussian system in the fun-
damental domain@ 0 and1, (b) 10, (c) 110, and(d) 100.

L along ¢ in Gaussian 2 and arrives between Gaussian 1 and
Gaussian 3 and escapes. There are then six different intervals
of the impact parameter, which yields trajectories remaining
FIG. 5. Periodic orbits of the three-Gaussian system in the fullin the system; one inner and one outer orbit bouncing coun-
configuration spacda) 0 and1, (b) 10, and(c) 110 and100. terclockwise in Gaussian 2 reaching Gaussian 3, one inner
and one outer orbit bouncing counterclockwise in Gaussian 2
The orbits discussed here are always moving counterreaching Gaussian 1, and one inner and one outer orbit
clockwise around the center of the system. In addition webouncing clockwise in Gaussian 2 reaching Gaussian 1.
have orbits moving clockwise close to the minimum of the ~The two dimensional discussion proceeds as above and
deflection function in Fig. 3. As long as a trajectory cannotwe obtain 6<6=36 rectangles in the Poincaneap for or-
turn and retrace its own path two different trajectories alwaydits scattering at least one time in the future and at least one
exist related by a time reversing symmetry. We then alsdime in the past. Symbolic dynamics is then defined with six
have a Cantor set of orbits moving in the opposite directionsymbols and all orbits in the repellor are described using
The symmetric three-Gaussian repellor has the symmetry
C3, and the dynamics can be reduced to the dynamics in .-S_1S0-51S -+, €{0,1,....,5 (5)
1/6th of the configuration spac#he fundamental domajin

with suitable group transformations as discussed by Cviiy the fundamental domain. Two of these symbols can be
tanovicand Eckhard{17]. The symbolic dynamics we use jdentified with the two symbols in thex22 Cantor set repel-
here[Eq. (4)] actually describes the dynamics in the funda-

mental domain. This reduction to the fundamental domain

simplie,the caculations and improves the convergenc of, TH€1% . The BUSTIIn oL 1e Seulifs, e ol e
the zeta function calculations. P P P

Some simple periodic orbits are drawn in Figs. 5 and 6.the binary three-Gaussian repellor 6r-0.016 andR=2.5.

Thg Iength of the prbit is different.in the fundamenta}l do- periodic orbit InA,) S, T, Maslov index
main, Fig. 6, and in the full domain, Fig. 5. The period 1

orbits with symbolic deﬂiptioﬁ and1, Fig. §a), and the 1 1.21324 1.33609 14.16627 1
period 3 orbits100 and110, Fig. %c), all are closing after 0 454595 1.22159 30.24667 0
one complete loop in the full configuration space while theio 553465 2.60128 41.13907 1
period 2 orbit10, Fig. §b), is closing after two loops in the 110 6.90987 3.92496 56.61924 2
full space. Table | lists the shortest periodic orbits of this1gg 10.15363 3.82353 71.46064 1
repellor. 1110 8.07331 526475 70.36953 3
1100 11.49029 5.14687 86.90523 2
B. Other Cantor set repellors for the three Gaussian @ 1470092 5.04513 101.70902 1
The critical deflection angleb. of a single potential in- 11110 9.30549 ~ 6.59974  84.67796 4
creases when the energy decreases. If the critical deflectioh 100 12.66306 6.48675 100.66375 3
angle ¢, is somewhat larger than 180° but well below 11010 12.45185 6.52629  97.76407 3
240° we obtain a different repellor. The trajectory from 11000 16.03689 6.36847 117.15278 2
Gaussian 1 scattering counterclockwise algnpdn Gaussian 10100 15.68763 6.42480 112.59887 2
2 will end between Gaussian 1 and Gaussian 2 and escapg000 19.24689 6.26672 131.95572 1

The trajectory from Gaussian 1 may also scatter clockwise
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lor while the other four symbols describe orbits created in TABLE II. The logarithm of the stabilityA,, the actionS;,

bifurcations as the energy decreases. and the timeT , for the shortest periodic orbits for the two Lennard-
It can easily be seen that if the critical deflection angleJones potentials witk=1.9 andR=10.0.

¢, is only slightly larger than 180° we may have a different

and more complicated repellor. It turns out to be a mixed Fundamental  Half

24 Cantor set repellor. domain plane Inf) So Tp
For limit R/a>1 with smaller energies yielding a larger

- . ; 0 0 7.96789  28.83628  6.65926
but flr_ute ¢ the repellor becomes a Cantor §et with an in- 1 7 6.05727 28.89761 6.40678
creasing number of rectangles, either with a fixed number of Z -
new intervals in each generation or with different numbers. 2 2 3.03531 17.03942 4.16773
For 240°< ¢.<480° we get a regular:88 Cantor set repel- 3 13 6.50561  29.69172  6.46975
lor. As the energy decreases the Cantor set gets larger and we 4 04 849030  29.65795  6.69145
get many more periodic orbits of short lengths. 01 01 14.02648  57.73408  13.06570
In the limit decreasing the energy such th&at goes to 02 02 11.30791  46.32394  10.84308
o the trajectory can move infinitely many times around one 03 0341 1452473 5854051  13.11474
Gaussian before reaching the next, and a Cantor set then @ 00424 16.48756  58.49467  13.35192
would n.eed an mﬁmte number pf intervals even in the first Iy Iy 934183 4636862  10.60726
g_enerat|on. In this case there is a §tab|e orbit a.round one - 1133 1256192 5858634  12.87756
single Gaussian and there do not exist a hyperbolic repellor. = it
Investigating these chaotic systems and systemskwtl0 is 14 1430 14.52473  58.54051  13.11474
beyond the scope of this paper but we belive an investigation ~ 23 1232 9.31555  46.33053  10.60673
of these systems has to be an extentation of the results ob- 24 0242  11.2v803  46.28455  10.84410
tained here. 34 14 1499585  59.34960  13.16142
C. Asymptotic Cantor set repellors ing back from the repelling singularity can always reach any
for the two-Gaussian system other potential as long as the potentials are well separated.

One example of a Cantor set repellor for the Lennard-Jones

The Cantor sets for the two-Gaussian system is in thegiential is obtained with the parameter valugs-1.9,
asymptotic limit a subset of the Cantor sets for the threerzl, Bo=3, andR=10. For these parameters we have in

Gaussian system. As the Poincgilane we choosex(p,)  the Poincareplaney=0 a similar repellor as thex4 Can-
fory=0. In the asymptotic case with a mixed 2 and 4 Cantolior set for the two-Gaussian system, but in addition an inter-
set in the three-Gaussian potential we gepa22Cantor set  val with orbits bouncing back from the repelling singularity.
for the two-Gaussian potential. Far, well above 180° and This gives us a X5 Cantor set repellor, and some short
below 540° the repellor is aX4 Cantor set, a subset of the orbits are drawn in Fig. 7. A five-letter symbolic dynamics is
6X6 or 8x8 Cantor set of the three-Gaussian system. Fodefined for this system by labeling each of the five stripes in
smaller values ofR the topological structure remains the the horseshoe foldings;€{0,1,. . .,4, where 0 and 1 cor-
same but the actual orbits are different from the correspond€spond to outer and inner clockwise bounce, 2 to a bounce
ing subset in the three-Gaussian system. A symbolic dynanfrom the repelling part, and 3 and 4 to inner and outer anti-
ics with two or four symbols can be applied to describe thes€lockwise bounce. By choosing a 180° rotation each time the
two repellors. Largeu, yields more complicated Cantor sets trajectory crosses theaxis we have a unique coding for the

in the same way as for the three-Gaussian system. system in one-half of the configuration space.
The fundamental domain is, however, only 1/4 of the full

configuration space>0, y>0. We obtain a symbolic cod-
ing in the fundamental domain by mapping the trajectory
back into the fundamental domain either by a 180° rotation

This way to analyze an asymptotic limit can be general-or by a reflectiory— —y each time the trajectory crosses the
ized to any finite number of Gaussian attractors. For infinitex axis, and use this choice to determine the symbol. The
systems with Gaussians on a square lattice it is not possibléxed points and the period-two orbits are given in Table I,
to get the complete repelling set because there will always b&here the symbolic description is given both for the funda-
a critical trajectory that does not escape. An approximaténental domain and for the half configuration plane. The or-
description may, however, be possible. The unstable orbits iRits in Fig. 7 are labeled by the fundamental domain alpha-
such a system may have an infinite but countable MarkoWpet.

D. Asymptotic Cantor set repellors
for the multi-Gaussian system

partition. This kind of lattice for disk systentSinai billiard) In the Lennard-Jones system it is possible for an orbit to
has been much studied. retrace itself and some orbits are their own time reversal
orbits. There is also a periodic orbit labelgd which is on
E. Lennard-Jones potentials the symmetry liney=0. This implies a more complicated

) . ) ~ factorization of the zeta functiofL7].
Including a singular repellor in the center of the potential

adds a new possibility of scattering from the single potential
but the analysis above to determine the Cantor set can be
repeated as the important critical trajectory still is the trajec- To be able to describe the pruned regions and to numeri-
tory through the rainbow singularity. The trajectories bounc-cally find periodic orbits it is useful to define new symbols,

IV. WELL ORDERED SYMBOLS
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W= -w;_1W;W,;, - - -, Which have an ordering in the same STV
way as the folds of the unstable and the stable manifolds are 60=0.WgW_1W_,...= .
ordered in the Poincar@lane [18,8,11. Cvitanovic [7] =1 M
showed that this makes it possible to define a pruning fron
that describes the nonadmissible orbits in the system. W
will also need this symbolic description to calculate periodic
orbits.

To define well ordered symbolg; , we have to determine
which part of the horseshoe map preserves the ordering
the manifolds in the Poincamaap from one crossing of the

Poincareplane to the next crossing, and which part of theIcaping orbit in the three-Gaussian system. If we choose

horseshoe flips the ordering of the manifolds. Two parallepoints along a curve in the Poincaptane &,p,) then y is

neighboring trajectories bouncing at the outside of the Criti'defined for each crossing between this curve and the stable

cal trajectory do not cross each other and the orderin anifolds andy is monotonously increasing as one crosses
through this bounce is conserved. Two trajectories inside og{ln Y y ASINg
he consecutive folds. In the same wéyncreases monoto-

the critical trajectory will cross each other before reaching X

the next Poincarglane and therefore flip the ordering in the nously as one crosses the unstable manifolds.

Poincareplane. The critical trajectory does not have a well

defined conserving or flipping, but as long as this trajectory V. PERIODIC ORBITS

does escape this does not pose any problems for our discus-\ye will apply the thermodynamic and semiclassical

sion. The scattering from the repelling center of the Lennardtheory for this scattering problem and have to find the peri-

Jones potential is like a dispersing bounce that flips the orggic orbits in the system. The standard way of using a New-

dering. ~ ton method can be applied for this system, but since we have
In the 2x2 Cantor set repellor for the three-Gaussiang rather thin Cantor set it is very hard to find a sufficiently

systems;=0 corresponds to preserving ordering e 1 good initial guess such that the Newton method converges. It

(10

t

borresponding well ordered symbols can in the same way be
fefined for the more complicated Cantor sets. One simply
uses the symbols, as obtained from the first folding of the
horseshoe and lgs; change sign if the bounce is a bounce
that changes the ordering. The inte§&ris then equal to the
umber of symbols.
Each point in the §,5) plane corresponds to one nones-

to flipping the ordering. We definefature parity p as is then difficult to find all the long periodic orbits that we
: _ need. Instead we have applied the method introduced in Ref.
pl:{ 1 i =0 [19]. This is a systematic search for an orbit with a given
-1 if =1, symbolic description and is here implemented as a binary
search. This method converges slightly slower than a New-
p; if s$.,,=0 ton method but fast enough for the applications we consider.
Pr+1=) _ P, if Suq=1 (6) To determine a perigdic orbit we iterate an arbitrary start-
ing point in the Poincar@lane and determine its symbolic
and the parity for the past as degcription. Every time the trial trajectory crosses the Poin-
careplane we use the poin(p,) to determine the symbol
1 if sp=0 according to Fig. @). In addition to the symbols; describ-
Po=) _ 1 if sy=1, ing the nonescaping trajectories we introduce three new sym-
bols n; for the position of a trajectory that will escape from
pif s_,=0 the system. We divide the Poincaptane into five areas:
pt_l=[ . (7)  with symbols 0 and 1 corresponding to the two folds of the
—p if s, =1 horseshoe mapping and three areas in which we know that

the trajectory will escape from the system before reaching
the next Poincaremap. These three areas are below the
horseshoe, between the folds of the horseshoe, and above the

We then get the well ordered future symbols as

=S horseshoe and we denote them by the symbds —2, and
{ s if p_i=1 —1. A positive symbol means that a trajectory remains in the
W= . (8)  system and scatters at least one more time while a negative
M=1-s if p-1=-1 symbol implies leaving the system. After some iterations the

trial orbit hits the Poincarelane in an area with negative
symbolic description and escapes. To find the well ordered
symbols we use EdB8) as long as the symbols are positive.

with M=2 and well ordered past symbols by

Wo=Sg, .20 :
00 For the last symboh;, which is negative, we apply the
o s if py=1 o following rule:
Y IM=1-s, if p=—1. -n—1 if p_i=1
WT nEM+1 if pg=—1 o
We can define symbolic values for the futuyeand the past Mt T Pr-a=—1
g Escaping symbols for the past are found in a similar way.

wandering set to those points in the Poincplane that do

o What we have done here is extend the ordering of the non-
= not belong to the Cantor set. The valugand 6 are calcu-

V= O.W1W2W3. =

Wi
=
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consist of bifurcations of orbits as we change one of the
parameters in the problem. The bifurcations may be global
where the unstable and stable manifolds of the Cantor set
become tangents or it may be local bifurcations when a
stable orbit changes its winding number isolated within a
stable island. We are here interested in the global bifurca-
tions because these determine the borders of the parameter
areas where we have one Cantor set repellor. We make the
assumption that all orbits can be described by a symbolic
dynamics string in an alphabet describing a complete Cantor
set. If we have a stable orbit this orbit can always be adia-
batically followed changing the energy and the distaRce
until we get a complete Cantor set with a well defined sym-
bolic description.

FIG. 7. Some periodic orbits in the Lennard-Jones system in the TN€ exact bifurcation that changes the hyperbolic repellor
full configuration space@ 1, (b) 23, and(c) 133. can be understood by observing the manifolds in the Poin-
caremap. We will treat the X2 Cantor set for the three-

lated as in(10), with the difference that the sum is finite. If Gaussian system in detail and the other repellors can be ana-
we now compare the symbolic values for the trial orbits withlyzed in a similar way.
the symbolic values for the periodic orbit we want to find, As we have seen above the well ordered symbolic dynam-
we know in which direction on the Poincaptane we have ics enumerates each fold of the unstable and stable manifolds
to move the starting point. We then implement this search asuch that the rightmost fold is given by a symbol string
a two dimensional bisection method. W=0000... and thdeftmost fold asw=1111.... The

For each periodic orbit we have calculated the stability2 2 Cantor set can be destroyed in two ways; either there is
A, which is the largest eigenvalue of the monodromy ma-a tangent between two manifolds such that we lose orbits
trix, the actionS,= fpdg, and the timeT,,. For the shortest from the hyperbolic repellor, or there is a tangent between
periodic orbits of the binary repellor foE=0.016 and two manifolds such that new orbits are created. Rauffi-
R=2.5 we have the logarithm of the stability, i), the ciently large, the first bifurcation takes place for a large en-
actionS,, and the period ,, all in the fundamental domain, €rgy, while the other bifurcates for a smaller energy. For
given in Table I. smaller R these two limits may cross each other and then

By using the same kind of method we have determinedhere are no parameter intervalsinwith a complete 2
periodic orbits in the two- and four-Gaussian systems. Alsgcantor set repellor.
for the two Lennard-Jones potentials we have determined a The first bifurcation removing orbits from the Cantor set
well ordered symbolic dynamics from the half system sym-removes the two homoclinic orbits with symbolic dynamics
bolic dynamics and determined the periodic orbits. Table [1IS=01110 and S=01010. In the Poincaremap this is the
yields the stability, action, and period for the shortest orbitscrossing between the leftmost unstable manifold and the in-
nermost fold in the horseshoe of stable manifolds. Both these
folds are manifolds from the hyperbolic fixed poiSt0,
which is one corner point of the Cantor set. To determine the

We have shown above that for larethe chaotic repel- bifurcations numerically we determine the singular trajectory
lors have different structures for different values of the en-starting normal to the ling= \3x+R/2, x>0, and find the
ergy E. The transitions from one repellor to another repellorenergy when this trajectory has a bifurcation. Figufe) 8

(h)

VI. BIFURCATIONS IN THE PARAMETER SPACE

0.10 0.01
Px 0.0 — Px 0.0
-0.10 -0.01
1.0 1.95 2.00 2.05
X b

FIG. 8. The manifolds at the bifurcation points of th&x2 Cantor set repellor foR=2.5. (a) E=0.02625;(b) E=0.01369.
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T I T ‘ T [ T
0.040 [ 7
| regular region i
0.030 - =
E bifurcation
0.020 -
region
0010 [
1 | 1 l 1 I 1
0.000
0.0 1.0 2.0 3.0 4.0

FIG. 9. The bifurcation curves in the plan®,E) giving the
first bounded orbit and the border curves for the simpke22Can-
tor set repellorVy,=0.1 anda=1.

shows the manifolds at this bifurcation point.

We have determined the bifurcation curves in the param-
eter plane R,E), and Fig. 9 gives the bifurcation curves that
are the borderlines of the areas in th& E) plane where we
have the %2 Cantor set of the three-Gaussian system to-
gether with the bifurcation curve where the first bounded
orbit starts to exist in the system. For the smalRsialues it
is difficult to determine numerically the bifurcation point.

The bifurcations and the orbits in the regions between the
main Cantor set areas can be examined by investigating the
stable and unstable manifolds. Figuresa1910(c) show the
manifolds as one changes the parameters in the area between
the 2xX 2 area and the mixed>42 area. The manifolds move
through each other, and Fig. @) is a Poincaremap for
parameter values between Figs(d)and 1@c) showing that
there is a stable periodic orbit surrounded by an island with
KAM (Kolmogorov-Arnold-Mosertories as expected for bi-
furcations of this type. Since the tangent points are created
by the rainbow singularity, we can consider the stability of
such a stable orbit to be given by this rainbow singularity
where nearby trajectories may converge to each other.

The unstable orbits in the not complete repellor case can
in principle be described by a pruning front in the symbol

The other bifurcation that creates new orbits but does noplane (y,5). We then first have to determine symbolic dy-
change the old 2 Cantor set takes place when a new fold namics for the orbits and one may do this by defining a

of the unstable manifold of the fixed poift becomes tan-
gent to the stable manifold of this fixed point. A magnifica-
tion of the manifolds in this bifurcation is drawn in Figi8.
This bifurcation point we get by first finding the singular
trajectory normal to the lingg=0, and then determine the
energy where this trajectory has a bifurcation.

0.005 0.005

partition curve through the primary turning points, following
the idea of Grassberger and Kantz who used this kind of
partition for the Haon map[20]. From this pruning front it
will be possible to construct a Markov description of the
dynamics, either exact if one exists, or an approximation
[21].

I FIG. 10. The manifolds as one
196 1.98 changes the parameters in the area
between the X2 area and the
mixed 4X2 area, R=2.5. (3
E=0.013675, () E=0.013670,

(c) E=0.013600, andd) Poincare
map showing a stable island
E=0.013620.

(a) (b)
Px 0.0 Px 0.0 S
-0.005 -0.005
1.94 1.96 1.98 1.94
X
0.01 0.00012
(c) (d)
px 0.0 - px 0.0 —
-0.01 -0.00012
1.8 2.1 1.9455

1.9466 1.9478

X
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TABLE Ill. The escaperates for the three-Gaussian binary re- TABLE V. The escape rates for the two Lennard-Jones poten-
pellor for different parameter values using the cycle expansion up tdials.
the given length.

E R Length 1 Length 2

E R Lengthl Length2 Length3 Length 4
10 0.646989 0.648509

0.016 23 0.07274 0.07189 0.07301 0.07265
0.016 25 0.07740 0.07758 0.07795 0.07784
0.017 25 0.07788  0.07743  0.07800  0.07785 Escape rates can also be found by performing a numerical
0.017 26 0.07953 0.07943 0.07978 0.07969 experiment. The escape rajeis given by the exponential
0.017 2.8 0.08176  0.08209  0.08220  0.08218 decay of the number of trajectories remaining in the system.
0.018 25  0.07796 0.07681 0.07762 0.07740 We limit the system by making a border that is a circle
0.018 27  0.08096 0.08053 0.08091 0.08082 containing the chaotic repellor where the center of the circle
0.018 29 0.08268 0.08264  0.08281  0.08278 coincides with the center of the system. The exponential de-
0018 3.1 0.08350 0.08367 0.08374 0.08373 Cay can be calculated by starting a lot of trajectories ran-
domly and computing the flight time until the trajectory
leaves the system. We have done this in Fig. 11 for a binary
repellor of the three Gaussians and in Fig. 12 for the
Lennard-Jones potential in the case where the chaotic repel-
VIl. ESCAPE RATES lor forms a 5x5 Cantor set. The slope of the straight line

drawn here is given by the escape rate gained by evaluating

TTIe CI%SS'Ca.I es::hap?hrate gan be_ C?Iculalt_ed for_tﬁhgou[%eg function. The escape rates agree to the precision we get
repefiors by using the thermodynamic formalism with dy- ¢, v for the numerical experiment. This gives a numerical
namical{ functions. This is discussed in Ref22] and[7]. check of ourz-function calculations

With t,=e"e/|A ;| wherep is the label of a primary peri-
odic orbit, T, is the period of the orbit, and , is the stability
of the orbit, we find the escape ragdfrom the zero points of VIIl. SEMICLASSICAL CALCULATIONS
the function:

Scattering potentials exhibiting rainbow singularities are

1Ui=1—ty—t;—[(toz—t1to)]—[(toor—toito) generic ir_1 atomic physics and we now want to demqnstrate
how semiclassical resonances can be fol##]23. We in-
+ (toa1—tosts) = [(tooor—totoos) + (tor11— torsts) vestigate the case in which the three Gaussians form a binary
chaotic repellor. Other chaotic repellors can be treated in the
+ (too11~ toosts — totorat totorts) ] — - - - same Wayl? P
We consider the system of three Gaussians when the cha-
=1—Ef tf_; Cp - (120 otic repellor forms a X2 Cantor set. This is true for the

energy rang€& €[0.016,0.0247, for R=2.5. In this case the
In Eq. (12) we get two contributions, which are calléan- ~ Symbolic description is complete with the alphab@tl}.
damentaltermst; andcurvaturetermsc,. The fundamental We have for the semiclassical calculations the same ex-
terms are large and have to be included in the calculationg@nsion as in12) but with a differentt,;
The curvature terms are constructed such that egdlcor-

responding to a square bracket in Efj2)] includes a shad- gli/h)Sp(E) —immp/2
owing effect and the term is relatively small. The terms = A (13

decrease fast with the lengthand we include onlyg,, up to
a given maximum value ofi. In Table Ill some results are
given for the region of the chaotic binary repellor in the

three-Gaussian system. The escape rates are calculated for 0.0 ‘
different cycle lengthsn. We have done this up to cycle 2.5+ -
lengthn=4 and it converges fast. Table IV contains some 50 - .
results for the binary repellor of two Gaussians and Table V
for the Lennard-Jones potential where we have used a similar o T |
expansion of the function with five symbols. T -loot ]
= E=0.016
TABLE IV. The escaperates for the two-Gaussian binary repel- -12.5 R=2.5
lor for different parameter values using the cycle expansion up to =150 r ]
the given length. J7sb—e v . 1A
0 100 200 300 400 500
E R Length1 Length2 Length3 Length 4 t

0.016 25 0.09073 0.09062 0.09063 0.09063
0.017 25 0.09012 0.08971 0.08977 0.08976 FIG. 11. Exponential decay of the trajectories in the three-

0.018 2.5 0.08788 0.08708 0.08719 0.08717 Gaussian systent,=0.016,R=2.5. The slope of the straight line is
taken from Table III.
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0.0 have any zeroes in the energy region 08H<0.0247 for
R=2.5 if we usefi=1. If we choosefi =0.05 we find two
5ok resonances in this regionE=0.0173-i0.00384 and
e E=0.0216-10.00217.
- __ Changing# corresponds to choosing new paramefers
& 1001 Vo, andE, which fulfill the scaling conditions of the Hamil-
= tonian for the three Gaussians.
~15.0 ~
- FVo=Vo, — (15)
MVo=Vg, ==~
200t Vo Vo
0 20 40 60 80 _ N
P and therefore do not change the dynamic and the stability of

the system. If we sein=20 we find V,=—0.005 and

FIG. 12. Exponential decay of the trajectories in the tWOEzE/ZO. By usingdS=p(dg/dt)dt we get the scaling of
Lennard-Jones systeri=1.9, R=10.0. The slope of the straight o 4 tjon:S= STr=5/0.05. Because of this thé function
line is taken from Table V. remains the same if we use the new parameters in atomic
. . . . units instead of the old parameters with=0.05. The reso-
where S,(E) is the classical action anah, is the Maslov  nances in the system with the new parameters are
index. __E=0.000865-i0.000192 andE=0.00108;-i0.0001085.
_In a system of two degrees of freedom the Maslov index  The resonances here are well within the energy interval
is twice the number of times the stable and unstable maniyithout bifurcations and the imaginary part of the energy is
folds wind around the periodic orbi24]. In the chaotic bi- quite small so we do not expect that including complex pe-
nary repellor this number depends on the symbolic dynamicgodic orbits (ghost orbits will significantly change the re-
in a simple way. Scattering outside the critical lirg€0)  sults. We have not calculated the resonances using quantum
means that neighboring trajectories conserve their orientamechanics, but from calculations in other systems we expect
tion, the stable and unstable manifold do not wind around thé¢he error to be relatively small.
periodic orbit. Scattering inside the critical lines;€1)
means neighboring trajectories change their orientation, the IX. CONCLUSION

stable and unstable manifold wind half around the periodic We have investigated a class of chaotic scattering Hamil-

orbit. The Maslov indexm,, for a periodic orbit of length  4njan systems that is quite generic. The invariant structure
with the symbolics, ,s;, . .. s, is then in these systems has been determined by finding an asymp-
totic limit and then identified the same structure for the more
n complicated systems in a Poincarlane. For some examples
mpZE Si - (14 we have calculated periodic orbits and used these to find the
=1 classical escape time and the quantum mechanical reso-
nances and demonstrated that this is possible for nontrivial
In chaotic systems like the hydrogen atom in magneticsystems. When the energy is very small for the scattering
field [25] and the collinear helium atofi26] are S,(E) and  systems and for bounded systems of this tygdeuble or
A,(E) energy scaling functions. It is sufficient to calculate triple wells and possibly the Hen-Heiles potentia) the
the periodic orbit andS,(E) and A ,(E) for one parameter structure of periodic orbits is very complicated and the meth-
value of E and then use scaling relations to obtain analyticalods applied here do not work directly. Further investigation
functionsS,(E) and A,(E). A Gaussian potential does not is required for making classical and semiclassical calcula-
have these scaling properties. tions in these systems, but the methods for analyzing these
In order to find an expression f@&,(E) and A ,(E) we have to be an extension of the methods used here.
have calculated periodic orbits, stability, action, and Maslov
indexes for energy values in the interval
E<[0.016,0.0247, R=2.5. We have approximate§,(E) The authors would like to express their gratitude to Dieter
and If A(E)] using polynomials of degree 5 i& for the ~ Wintgen, who died a short time after having initiated this
real energy and used these functions as the analytical coproject. The authors thank John Briggs, Gernot Alber, Jan
tinuation into the complex energy plane. Michael Rost, Predrag Cvitanoviand Stephen Creagh for
In our model system we have chosen atomic units andhelpful discussions. K.T.H. is grateful to the Alexander von
consequently havk=1. The semiclassicdl function do not Humboldt foundation for financial support.
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