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We investigate chaotic scattering in a family of two dimensional Hamiltonian systems. The potential in
which a point particle scatters consists of a superposition of a finite number of central force potentials. Each
central force potential is either attracting without any singularity, or attracting at long distances with a repelling
singularity in the center motivated by potentials used in molecular interaction. The rainbow effect obtained
from scattering in one such potential causes the chaotic scattering, and we show that for these systems there
exist regions in the parameter space where the repelling sets are complete two dimensional Cantor sets of
different type. We define symbolic dynamics and calculate periodic orbits for these systems and determine the
classical escape rate and the quantum mechanic resonances using the zeta-function formalism. We examine the
systems with two, three, and four attracting Gaussian potentials and two Lennard-Jones potentials.
@S1063-651X~96!11412-4#

PACS number~s!: 05.45.1b, 03.80.1r

I. INTRODUCTION

Chaotic scattering is a problem that has received much
interest in the last decade. The structure of classical trajecto-
ries in these scattering problems has been investigated and
quantum mechanical scattering using both semiclassical
methods and exact quantum mechanics methods has been
examined. The most popular models have been billiard prob-
lems, where a particle moves on a two-dimensional plane
and bounces elastically from some number of walls. The
Lorentz gas@1# and the Sinai billiard@2# are infinite systems
of this type. A model for chaotic scattering in a finite region
and then escaping was introduced by Eckhardt; thethree-
disk system, where the particle scatters from the borders of
three disks in the plane. This may be the simplest physical
example of a chaotic scatterer and is the subject of a number
of investigations@3–8#. For sufficiently separated disks the
chaotic repellor has a complete Cantor set structure, which
simplifies the classical and semiclassical discussion. The
hard disks in this problem can be replaced by smooth repel-
ling potentials@9#, and this model can also give a similar
type of chaotic repellor.

Attracting potentials may also yield a chaotic scatterer
and an example for a scatterer of this type has been intro-
duced by Troll and Smilansky@10,11#. This system consists
of an infinite array of potentials with a finite range where the
potentials do not overlap each other and each potential
changes the direction of the particle in a linear way. This
model yields a repellor with a Cantor set structure. Scattering
through a double well potential has been studied by Daniels,
Vallières, and Yuan@12# and their system shows some simi-
larities with the systems described below. This paper de-
scribes the cases where the double well types of potentials

has a Cantor set structure. The symbolic dynamics we intro-
duce must be the starting point for defining symbols also for
not complete repellors of this type. The symbolic dynamics
introduced in@12# does not distinguish different orbits and
cannot be used to label periodic orbits.

In a chaotic system there are two mechanisms acting on
trajectories: a dispersing mechanism of neighboring trajecto-
ries giving a sensitive dependence on initial conditions and a
folding of trajectories that have moved far away from each
other such that they again move close. In attracting potentials
we may obtain this dispersing and folding mechanisms from
the well known rainbow effect in a central force potential
@13#. A central force potential that is attracting without an
attracting singularity or a potential attractive for large dis-
tances and repulsive for short distances has a deflection func-
tion such that more than one incoming trajectory~impact
parameter! yields the same reflected angle of the particle
~deflection angle!. This gives the folding of trajectories. Tra-
jectories sufficiently far away from the extremum value of
the deflection function have the property that neighboring
trajectories disperse and then give the sensitive dependence
on initial conditions. A combination of two or more such
central force potentials may therefore give rise to chaotic
scattering. As we show below this analysis is also valid for
composed potentials where the different central potentials
overlap. The extremum point of the deflection function cre-
ates bifurcations and stable orbits in these systems.

We discuss here model systems, each consisting of a po-
tential that is a superposition of a finite number of central
attracting potentials with and without a repelling singularity.
The potentials are apparently similar to the three-disk repel-
lors but the repelling set has a different and much richer
structure. We show that for certain areas in the parameter
space we can obtain a repellor with a simple Cantor set struc-
ture, and we discuss the transition between these simple re-
pellors. We introduce a symbolic dynamics to enumerate the
orbits and give methods to find orbits numerically. For the
simple repellor cases we calculate classical escape rates us-
ing the thermodynamical zeta function and we make some
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semiclassical calculations and obtain quantum mechanical
resonances.

This model is motivated by problems in atomic and mo-
lecular physics where attracting potentials of this type are
typical. A repellor consisting of only attracting Coulomb po-
tentials yields a completely different system@14# and it is
essential for our discussion that we have a potential without
an attractive singularity. We have chosen Gaussian potentials
for the attracting case and Lennard-Jones potentials for the
singular scatterer, but other potentials with a similar structure
will not change much in our results. The main result we want
to focus on is the topological structure of the chaotic scat-
terer, which in many cases does not depend sensitively on
the exact shape of the potential.

II. DEFINITIONS

The Hamiltonian describing the motion of a particle on a
plane is

H5
px
2

2m
1

py
2

2m
1V~x,y!, ~1!

whereV(x,y) may be a smooth function or for billiard sys-
tems a discontinuous function ofx and y. We choose
V(x,y) to be a superposition of some finite number of attrac-
tive Gaussian potentials
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or Lennard-Jones potentials with a repelling singularity
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When we let a particle pass through one such potential we
obtain a deflection function with a rainbow effect for some
outgoing angle. It turns out to be essential to control the
trajectory moving along the path giving the rainbow singu-
larity and we will refer to this trajectory as asingular orbit
through the Gaussian or Lennard-Jones potential. Controlling

all such singular orbits yields the method to control the to-
pological structure of the chaotic repellor.

We obtain the symmetric three-Gaussian system by
choosing three potentials~2! with (xi ,yi) as the corners of a
regular triangle with distanceR between the centers
x15x25y350, x352A3R/2, y152R/2, y25R/2. The pa-
rameters of the system areR, V0, a, m, and E. We will
assume below, if not otherwise stated, thata5m51 and
V050.1. We have chosen this as our main example and most
numerical results are given for this system. This example
illustrates the general techniques we use and new examples
can be worked out using the same methods.

In Fig. 1 the three-Gaussian potential is drawn for two
different distances,R, between the disk centers. In Fig. 1~a!
the distance is small,R52.5, and the three potentials form
one big well with three minimum points. In Fig. 1~b! the
potential consists of three separated wells withR58.0. Even
if the potentials look very different the dynamics may have
the same topological structure choosing a proper energy, and
since the latter system is simpler to analyze we will start the
discussion in the asymptotic limitR/a@1 where the three
Gaussian potentials are far from each other and the particle
moves nearly as a free particle between two Gaussian wells.
To simplify the discussion we enumerate the three Gaussians
counterclockwise as indicated in Fig. 1 and denote them
Gaussian 1, Gaussian 2, and Gaussian 3.

A two-Gaussian system is similarly defined withxi50
and yi56R/2 and we have also studied a four-Gaussian
system withxi56R/2 and yi56R/2. We investigate the
two Lennard-Jones Hamiltonians withxi50 and
yi56R/2. Figure 2 shows this potential for the parameters
A51, B53, andR510.

III. ASYMPTOTIC CANTOR SET REPELLORS

To discuss the limitR/a@1 we assume that each single
potential vanishes at a distancebmax,R/2 from the center of
the potential. This is practically true for the parameters we
have used in Fig. 1~b!. Then the particle moves freely be-
tween the single potentials and we can investigate the motion
through one single Gaussian potential independent of the
other Gaussians. The scattering through a single Gaussian is

FIG. 1. The three-Gaussian potentials in the (x,y) plane with parametersV050.1,a51, and~a! R52.5, ~b! R58.0.
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described by finding the deflection angle as a function of the
impact parameter@13#. In Fig. 3 the deflection angle is given
for E50.024 and the deflection angle reaches a maximum or
minimum value6fc for some critical impact parameter
6bc where the cross section becomes infinite. As the energy
decreases this maximum~minimum! value increases~de-
creases!. We restrict our discussion to energies where this
maximum value remains finite.

We want to study the classical chaotic scattering and for
the quantum mechanical system only describe the reso-
nances. We are therefore not directly interested in the cross
section itself@15#, but only in the part of the cross section
that hits a new attracting potential. Only trajectories in this
part can give contributions to the chaotic dynamics and to
resonances in the quantum mechanical system. The cross
section will change a lot with the incoming angle while the
resonances are fixed quantities independent of the direction.
Which impact parameters give trajectories remaining in the
system depends on the position of the potentials in the plane,
onfc , which is a function of the energyE, the massm, and
the parameters of the potential,V0 anda.

If a trajectory along the critical deflection anglefc
reaches a new potential, then there is a possibility to have

stable orbits and a complicated system. We will therefore
first investigate the case where a trajectory alongfc escapes
immediately from the system.

A. 232 Cantor set

For the three-Gaussian system in Fig. 1~b! with fc well
below 120° there are no trajectories that are captured in the
system. Any particle from outside or starting somewhere in-
side the system will escape as a free particle after having
scattered in at most two Gaussian potentials.

The situation is very different if we choose a smaller en-
ergy such thatfc is somewhat larger than 120°~the exact
value is discussed below! but well below 180°, for example,
Fig. 3 withfc'150°.

First we make a simplified discussion to illustrate this; let
a trajectory from Gaussian 1 in Fig. 1~b! scatter counter-
clockwise in Gaussian 2 and obtain a deflection angle such
that it reaches Gaussian 3. The critical trajectory that scatters
counterclockwise with the anglefc will bend more and pass
somewhere between the Gaussian 1 and Gaussian 3 where
the potential is 0, and will consequently then escape as a free
particle. There are two intervals of the impact parameterb in
Fig. 3, one on each side of the critical impact parameter
bc , in which trajectories hit Gaussian 3 and can continue
scattering in the system. This creation of these two intervals
is the essential point. We can now repeat the same argument
for the trajectories in each of these two intervals; in each
interval there will be one critical trajectory counterclockwise
through Gaussian 3 escaping between Gaussian 1 and Gauss-
ian 2 and two intervals reaching Gaussian 1. We have then
obtained four intervals in our initial positions of trajectories
from Gaussian 1 and all trajectories in these intervals scatter
in Gaussian 2 and Gaussian 3 and return to Gaussian 1. Re-
peating this argument infinitely many times we get a Cantor
set of trajectories remaining in the system forever. The orbits
will be unstable as long as the slope for the function in Fig.
3 is sufficiently steep in the relevant intervals ofb.

The argumentation above gives the correct idea of the
dynamics, but our system is a Hamiltonian with two degrees
of freedom and has to be discussed in a two dimensional
Poincare´ map. It is natural to choose a Poincare´ map reflect-
ing the symmetry of the problem and we choose as a Poin-

FIG. 2. The two Lennard-Jones potentials in the (x,y) plane
with parametersA051, B053, andR510.

FIG. 3. The deflection anglef in degrees as a function of the impact parameterb for one single Gaussian potential~2! for a51,
V050.1 and the energyE50.024.
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carémap the crossing of the trajectory with one of the lines
from the midpoint in the trianglex50, y50 going between
any two Gaussians; that is the three lines indicated in Fig. 1,
y50 for x.2R/A12, y56(A3x1R/2) for x,2R/A12.
As the abscissa in this Poincare´ map we choose the position
on the symmetry line, which we denote for simplicity also by
x and setx50 at the midpoint between two Gaussians and as
the ordinate we choose the momentum in thisx direction,
px .

As a numerical experiment we scan the starting points of
the Poincare´ plane and plot only the points that scatter at
Gaussian 1 and then arrive close to Gaussian 2. This is done
in Fig. 4~a! and we find an area similar to the well known
Smale horseshoe map@16#. In the Poincare´ plane there is one
connected curve of starting points yielding the critical de-
flection in the first Gaussian as indicated in Fig. 4~a!, and
these give the primary turning points of the horseshoe fold-
ing in the asymptotic limit. To construct the two dimensional
Cantor set we also have to follow the trajectories backward
in time. In Fig. 4~b! the points reaching a Gaussian after
having scattered both once forward in time and once back-
ward in time are plotted, and we get four areas, which are
called rectangles, in the Poincare´ plane.

What is important here is that there are always critical
trajectories from the Poincare´ plane reaching a new Gaussian
but only forward in time or only backward in time. There is
no point giving a critical trajectory reaching a new Gaussian
both forward and backward in time; the trajectory scattering
along a critical trajectory forward in time will escape back-
ward in time and visa versa. This is the essential part in our

construction of the Cantor set repellor.
To get the next generations in the construction of the Can-

tor set repellor we just repeat the argument for each of the
four rectangles in Fig. 4~b!, scattering twice forward and
twice backward yields 16 rectangles. In Fig. 4~c! we have
drawn the points not escaping after two iterations forward in
time. This yields a twice folded horseshoe. In Fig. 4~d! the
16 rectangles of orbits not escaping after two scatterings for-
ward and backward in time are drawn. Three scatterings
yield 64 rectangles and so on. In the limitR→` the repellor
has this topological structure for 120°,fc,180°. We will
refer to this repellor as the 232 Cantor set.

A symbolic dynamicsdescription of the Cantor set is de-
termined by labeling a point in the Poincare´ plane in the
upper right fold of the horseshoe in Fig. 4~a! s50, and in the
lower left fold s51 as indicated in the figure. Thens51
corresponds to the fact that the particle will be scattered in
the next Gaussian along a trajectory closer to the center of
the Gaussian than the critical trajectory and we call this an
inner bounce. For s50 we have anouter bounce, a trajec-
tory outside of the critical trajectory. Any trajectory in the
repellor is uniquely determined by a bi-infinite symbol string

•••s21s0•s1s2•••, stP$0,1% ~4!

where the symbols to the right and to the left of the dot
describe the scattering forward and scattering backward in
time. We use the convention that a line above a symbol
string denotes an infinite repetition of the string. Periodic
orbits are written ass1s2•••sn5(s1s2•••sn)

`.

FIG. 4. Starting points of the
three-Gaussian system, which re-
main in the system after some
number of scatterings in Gaussian
potentials,E50.024, R52.5. ~a!
One scattering forward in time
~Smale horseshoe!, ~b! one scatter-
ing forward and one scattering
backward, ~c! two forward, and
~d! two forward and two back-
ward. In ~a! the symbolic dynam-
ics st is indicated.
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The orbits discussed here are always moving counter-
clockwise around the center of the system. In addition we
have orbits moving clockwise close to the minimum of the
deflection function in Fig. 3. As long as a trajectory cannot
turn and retrace its own path two different trajectories always
exist related by a time reversing symmetry. We then also
have a Cantor set of orbits moving in the opposite direction.

The symmetric three-Gaussian repellor has the symmetry
C3v and the dynamics can be reduced to the dynamics in
1/6th of the configuration space,the fundamental domain,
with suitable group transformations as discussed by Cvi-
tanović and Eckhardt@17#. The symbolic dynamics we use
here@Eq. ~4!# actually describes the dynamics in the funda-
mental domain. This reduction to the fundamental domain
simplifies the calculations and improves the convergence of
the zeta function calculations.

Some simple periodic orbits are drawn in Figs. 5 and 6.
The length of the orbit is different in the fundamental do-
main, Fig. 6, and in the full domain, Fig. 5. The period 1
orbits with symbolic description0 and1, Fig. 5~a!, and the
period 3 orbits100 and110, Fig. 5~c!, all are closing after
one complete loop in the full configuration space while the
period 2 orbit10, Fig. 5~b!, is closing after two loops in the
full space. Table I lists the shortest periodic orbits of this
repellor.

B. Other Cantor set repellors for the three Gaussian

The critical deflection anglefc of a single potential in-
creases when the energy decreases. If the critical deflection
angle fc is somewhat larger than 180° but well below
240° we obtain a different repellor. The trajectory from
Gaussian 1 scattering counterclockwise alongfc in Gaussian
2 will end between Gaussian 1 and Gaussian 2 and escape.
The trajectory from Gaussian 1 may also scatter clockwise

alongfc in Gaussian 2 and arrives between Gaussian 1 and
Gaussian 3 and escapes. There are then six different intervals
of the impact parameter, which yields trajectories remaining
in the system; one inner and one outer orbit bouncing coun-
terclockwise in Gaussian 2 reaching Gaussian 3, one inner
and one outer orbit bouncing counterclockwise in Gaussian 2
reaching Gaussian 1, and one inner and one outer orbit
bouncing clockwise in Gaussian 2 reaching Gaussian 1.

The two dimensional discussion proceeds as above and
we obtain 636536 rectangles in the Poincare´ map for or-
bits scattering at least one time in the future and at least one
time in the past. Symbolic dynamics is then defined with six
symbols and all orbits in the repellor are described using

•••s21s0•s1s2•••, stP$0,1, . . . ,5% ~5!

in the fundamental domain. Two of these symbols can be
identified with the two symbols in the 232 Cantor set repel-

TABLE I. The logarithm of the stabilityLp , the actionSp , the
timeTp , and the Maslov indexmp for the shortest periodic orbits in
the binary three-Gaussian repellor forE50.016 andR52.5.

Periodic orbit ln(Lp) Sp Tp Maslov index

1 1.21324 1.33609 14.16627 1

0 4.54595 1.22159 30.24667 0

10 5.53465 2.60128 41.13907 1

110 6.90987 3.92496 56.61924 2

100 10.15363 3.82353 71.46064 1

1110 8.07331 5.26475 70.36953 3

1100 11.49029 5.14687 86.90523 2

1000 14.70092 5.04513 101.70902 1

11110 9.30549 6.59974 84.67796 4

11100 12.66306 6.48675 100.66375 3

11010 12.45185 6.52629 97.76407 3

11000 16.03689 6.36847 117.15278 2

10100 15.68763 6.42480 112.59887 2

10000 19.24689 6.26672 131.95572 1

FIG. 5. Periodic orbits of the three-Gaussian system in the full
configuration space.~a! 0 and1, ~b! 10, and~c! 110 and100.

FIG. 6. Periodic orbits of the three-Gaussian system in the fun-
damental domain.~a! 0 and1, ~b! 10, ~c! 110, and~d! 100.
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lor while the other four symbols describe orbits created in
bifurcations as the energy decreases.

It can easily be seen that if the critical deflection angle
fc is only slightly larger than 180° we may have a different
and more complicated repellor. It turns out to be a mixed
234 Cantor set repellor.

For limit R/a@1 with smaller energies yielding a larger
but finite fc the repellor becomes a Cantor set with an in-
creasing number of rectangles, either with a fixed number of
new intervals in each generation or with different numbers.
For 240°,fc,480° we get a regular 838 Cantor set repel-
lor. As the energy decreases the Cantor set gets larger and we
get many more periodic orbits of short lengths.

In the limit decreasing the energy such thatfc goes to
` the trajectory can move infinitely many times around one
Gaussian before reaching the next, and a Cantor set then
would need an infinite number of intervals even in the first
generation. In this case there is a stable orbit around one
single Gaussian and there do not exist a hyperbolic repellor.
Investigating these chaotic systems and systems withE,0 is
beyond the scope of this paper but we belive an investigation
of these systems has to be an extentation of the results ob-
tained here.

C. Asymptotic Cantor set repellors
for the two-Gaussian system

The Cantor sets for the two-Gaussian system is in the
asymptotic limit a subset of the Cantor sets for the three-
Gaussian system. As the Poincare´ plane we choose (x,px)
for y50. In the asymptotic case with a mixed 2 and 4 Cantor
set in the three-Gaussian potential we get a 232 Cantor set
for the two-Gaussian potential. Forfc well above 180° and
below 540° the repellor is a 434 Cantor set, a subset of the
636 or 838 Cantor set of the three-Gaussian system. For
smaller values ofR the topological structure remains the
same but the actual orbits are different from the correspond-
ing subset in the three-Gaussian system. A symbolic dynam-
ics with two or four symbols can be applied to describe these
two repellors. Largerfc yields more complicated Cantor sets
in the same way as for the three-Gaussian system.

D. Asymptotic Cantor set repellors
for the multi-Gaussian system

This way to analyze an asymptotic limit can be general-
ized to any finite number of Gaussian attractors. For infinite
systems with Gaussians on a square lattice it is not possible
to get the complete repelling set because there will always be
a critical trajectory that does not escape. An approximate
description may, however, be possible. The unstable orbits in
such a system may have an infinite but countable Markov
partition. This kind of lattice for disk systems~Sinai billiard!
has been much studied.

E. Lennard-Jones potentials

Including a singular repellor in the center of the potential
adds a new possibility of scattering from the single potential
but the analysis above to determine the Cantor set can be
repeated as the important critical trajectory still is the trajec-
tory through the rainbow singularity. The trajectories bounc-

ing back from the repelling singularity can always reach any
other potential as long as the potentials are well separated.
One example of a Cantor set repellor for the Lennard-Jones
potential is obtained with the parameter valuesE51.9,
A051, B053, andR510. For these parameters we have in
the Poincare´ planey50 a similar repellor as the 434 Can-
tor set for the two-Gaussian system, but in addition an inter-
val with orbits bouncing back from the repelling singularity.
This gives us a 535 Cantor set repellor, and some short
orbits are drawn in Fig. 7. A five-letter symbolic dynamics is
defined for this system by labeling each of the five stripes in
the horseshoe folding,stP$0,1, . . . ,4%, where 0 and 1 cor-
respond to outer and inner clockwise bounce, 2 to a bounce
from the repelling part, and 3 and 4 to inner and outer anti-
clockwise bounce. By choosing a 180° rotation each time the
trajectory crosses thex axis we have a unique coding for the
system in one-half of the configuration space.

The fundamental domain is, however, only 1/4 of the full
configuration space;x.0, y.0. We obtain a symbolic cod-
ing in the fundamental domain by mapping the trajectory
back into the fundamental domain either by a 180° rotation
or by a reflectiony→2y each time the trajectory crosses the
x axis, and use this choice to determine the symbol. The
fixed points and the period-two orbits are given in Table II,
where the symbolic description is given both for the funda-
mental domain and for the half configuration plane. The or-
bits in Fig. 7 are labeled by the fundamental domain alpha-
bet.

In the Lennard-Jones system it is possible for an orbit to
retrace itself and some orbits are their own time reversal
orbits. There is also a periodic orbit labeled2, which is on
the symmetry liney50. This implies a more complicated
factorization of the zeta function@17#.

IV. WELL ORDERED SYMBOLS

To be able to describe the pruned regions and to numeri-
cally find periodic orbits it is useful to define new symbols,

TABLE II. The logarithm of the stabilityLp , the actionSp ,
and the timeTp for the shortest periodic orbits for the two Lennard-
Jones potentials withE51.9 andR510.0.

Fundamental Half
domain plane ln(Lp) Sp Tp

0 0 7.96789 28.83628 6.65926

1 1 6.05727 28.89761 6.40678

2 2 3.03531 17.03942 4.16773

3 13 6.50561 29.69172 6.46975

4 04 8.49030 29.65795 6.69145

01 01 14.02648 57.73408 13.06570

02 02 11.30791 46.32394 10.84308

03 0341 14.52473 58.54051 13.11474

04 0044 16.48756 58.49467 13.35192

12 12 9.34183 46.36862 10.60726

13 1133 12.56192 58.58634 12.87756

14 1430 14.52473 58.54051 13.11474

23 1232 9.31555 46.33053 10.60673

24 0242 11.27803 46.28455 10.84410

34 14 14.99585 59.34960 13.16142
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W5•••wt21wtwt11•••, which have an ordering in the same
way as the folds of the unstable and the stable manifolds are
ordered in the Poincare´ plane @18,8,11#. Cvitanović @7#
showed that this makes it possible to define a pruning front
that describes the nonadmissible orbits in the system. We
will also need this symbolic description to calculate periodic
orbits.

To define well ordered symbolswi , we have to determine
which part of the horseshoe map preserves the ordering of
the manifolds in the Poincare´ map from one crossing of the
Poincare´ plane to the next crossing, and which part of the
horseshoe flips the ordering of the manifolds. Two parallel
neighboring trajectories bouncing at the outside of the criti-
cal trajectory do not cross each other and the ordering
through this bounce is conserved. Two trajectories inside of
the critical trajectory will cross each other before reaching
the next Poincare´ plane and therefore flip the ordering in the
Poincare´ plane. The critical trajectory does not have a well
defined conserving or flipping, but as long as this trajectory
does escape this does not pose any problems for our discus-
sion. The scattering from the repelling center of the Lennard-
Jones potential is like a dispersing bounce that flips the or-
dering.

In the 232 Cantor set repellor for the three-Gaussian
systemst50 corresponds to preserving ordering andst51
to flipping the ordering. We define afuture parity pt as

p15H 1 if s150

21 if s151,

pt115H pt if st1150

2pt if st1151
~6!

and the parity for the past as

p05H 1 if s050

21 if s051,

pt215H pt if st2150

2pt if st2151.
~7!

We then get the well ordered future symbols as

w15s1 ,

wt5H st if pt2151

M212st if pt21521
~8!

with M52 and well ordered past symbols by

w05s0 ,

wt5H st if pt1151

M212st if pt11521.
~9!

We can define symbolic values for the futureg and the past
d:

g50.w1w2w3...5(
t51

`
wt

Mt ,

d50.w0w21w22...5(
t51

`
w12t

M t . ~10!

Corresponding well ordered symbols can in the same way be
defined for the more complicated Cantor sets. One simply
uses the symbolsst as obtained from the first folding of the
horseshoe and letpt change sign if the bounce is a bounce
that changes the ordering. The integerM is then equal to the
number of symbols.

Each point in the (g,d) plane corresponds to one nones-
caping orbit in the three-Gaussian system. If we choose
points along a curve in the Poincare´ plane (x,px) theng is
defined for each crossing between this curve and the stable
manifolds andg is monotonously increasing as one crosses
the consecutive folds. In the same wayd increases monoto-
nously as one crosses the unstable manifolds.

V. PERIODIC ORBITS

We will apply the thermodynamic and semiclassical
theory for this scattering problem and have to find the peri-
odic orbits in the system. The standard way of using a New-
ton method can be applied for this system, but since we have
a rather thin Cantor set it is very hard to find a sufficiently
good initial guess such that the Newton method converges. It
is then difficult to find all the long periodic orbits that we
need. Instead we have applied the method introduced in Ref.
@19#. This is a systematic search for an orbit with a given
symbolic description and is here implemented as a binary
search. This method converges slightly slower than a New-
ton method but fast enough for the applications we consider.

To determine a periodic orbit we iterate an arbitrary start-
ing point in the Poincare´ plane and determine its symbolic
description. Every time the trial trajectory crosses the Poin-
caréplane we use the point (x,px) to determine the symbol
according to Fig. 4~a!. In addition to the symbolsst describ-
ing the nonescaping trajectories we introduce three new sym-
bols nt for the position of a trajectory that will escape from
the system. We divide the Poincare´ plane into five areas:
with symbols 0 and 1 corresponding to the two folds of the
horseshoe mapping and three areas in which we know that
the trajectory will escape from the system before reaching
the next Poincare´ map. These three areas are below the
horseshoe, between the folds of the horseshoe, and above the
horseshoe and we denote them by the symbols23,22, and
21. A positive symbol means that a trajectory remains in the
system and scatters at least one more time while a negative
symbol implies leaving the system. After some iterations the
trial orbit hits the Poincare´ plane in an area with negative
symbolic description and escapes. To find the well ordered
symbols we use Eq.~8! as long as the symbols are positive.
For the last symbolni , which is negative, we apply the
following rule:

wt5H 2nt21 if pt2151

nt1M11 if pt21521.
~11!

Escaping symbols for the past are found in a similar way.
What we have done here is extend the ordering of the non-
wandering set to those points in the Poincare´ plane that do
not belong to the Cantor set. The valuesg andd are calcu-
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lated as in~10!, with the difference that the sum is finite. If
we now compare the symbolic values for the trial orbits with
the symbolic values for the periodic orbit we want to find,
we know in which direction on the Poincare´ plane we have
to move the starting point. We then implement this search as
a two dimensional bisection method.

For each periodic orbit we have calculated the stability
Lp , which is the largest eigenvalue of the monodromy ma-
trix, the actionSp5*pdq, and the timeTp . For the shortest
periodic orbits of the binary repellor forE50.016 and
R52.5 we have the logarithm of the stability, ln(Lp), the
actionSp , and the periodTp , all in the fundamental domain,
given in Table I.

By using the same kind of method we have determined
periodic orbits in the two- and four-Gaussian systems. Also
for the two Lennard-Jones potentials we have determined a
well ordered symbolic dynamics from the half system sym-
bolic dynamics and determined the periodic orbits. Table II
yields the stability, action, and period for the shortest orbits.

VI. BIFURCATIONS IN THE PARAMETER SPACE

We have shown above that for largeR the chaotic repel-
lors have different structures for different values of the en-
ergyE. The transitions from one repellor to another repellor

consist of bifurcations of orbits as we change one of the
parameters in the problem. The bifurcations may be global
where the unstable and stable manifolds of the Cantor set
become tangents or it may be local bifurcations when a
stable orbit changes its winding number isolated within a
stable island. We are here interested in the global bifurca-
tions because these determine the borders of the parameter
areas where we have one Cantor set repellor. We make the
assumption that all orbits can be described by a symbolic
dynamics string in an alphabet describing a complete Cantor
set. If we have a stable orbit this orbit can always be adia-
batically followed changing the energy and the distanceR
until we get a complete Cantor set with a well defined sym-
bolic description.

The exact bifurcation that changes the hyperbolic repellor
can be understood by observing the manifolds in the Poin-
carémap. We will treat the 232 Cantor set for the three-
Gaussian system in detail and the other repellors can be ana-
lyzed in a similar way.

As we have seen above the well ordered symbolic dynam-
ics enumerates each fold of the unstable and stable manifolds
such that the rightmost fold is given by a symbol string
W50000 . . . and theleftmost fold asW51111 . . . . The
232 Cantor set can be destroyed in two ways; either there is
a tangent between two manifolds such that we lose orbits
from the hyperbolic repellor, or there is a tangent between
two manifolds such that new orbits are created. ForR suffi-
ciently large, the first bifurcation takes place for a large en-
ergy, while the other bifurcates for a smaller energy. For
smallerR these two limits may cross each other and then
there are no parameter intervals inE with a complete 232
Cantor set repellor.

The first bifurcation removing orbits from the Cantor set
removes the two homoclinic orbits with symbolic dynamics
S501110 andS501010. In the Poincare´ map this is the
crossing between the leftmost unstable manifold and the in-
nermost fold in the horseshoe of stable manifolds. Both these
folds are manifolds from the hyperbolic fixed pointS50,
which is one corner point of the Cantor set. To determine the
bifurcations numerically we determine the singular trajectory
starting normal to the liney5A3x1R/2, x.0, and find the
energy when this trajectory has a bifurcation. Figure 8~a!

FIG. 7. Some periodic orbits in the Lennard-Jones system in the
full configuration space.~a! 1, ~b! 23, and~c! 133.

FIG. 8. The manifolds at the bifurcation points of the 232 Cantor set repellor forR52.5. ~a! E50.02625;~b! E50.01369.
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shows the manifolds at this bifurcation point.
The other bifurcation that creates new orbits but does not

change the old 232 Cantor set takes place when a new fold
of the unstable manifold of the fixed point0 becomes tan-
gent to the stable manifold of this fixed point. A magnifica-
tion of the manifolds in this bifurcation is drawn in Fig. 8~b!.
This bifurcation point we get by first finding the singular
trajectory normal to the liney50, and then determine the
energy where this trajectory has a bifurcation.

We have determined the bifurcation curves in the param-
eter plane (R,E), and Fig. 9 gives the bifurcation curves that
are the borderlines of the areas in the (R,E) plane where we
have the 232 Cantor set of the three-Gaussian system to-
gether with the bifurcation curve where the first bounded
orbit starts to exist in the system. For the smallestR values it
is difficult to determine numerically the bifurcation point.

The bifurcations and the orbits in the regions between the
main Cantor set areas can be examined by investigating the
stable and unstable manifolds. Figures 10~a!–10~c! show the
manifolds as one changes the parameters in the area between
the 232 area and the mixed-432 area. The manifolds move
through each other, and Fig. 10~d! is a Poincare´ map for
parameter values between Figs. 10~b! and 10~c! showing that
there is a stable periodic orbit surrounded by an island with
KAM ~Kolmogorov-Arnold-Moser! tories as expected for bi-
furcations of this type. Since the tangent points are created
by the rainbow singularity, we can consider the stability of
such a stable orbit to be given by this rainbow singularity
where nearby trajectories may converge to each other.

The unstable orbits in the not complete repellor case can
in principle be described by a pruning front in the symbol
plane (g,d). We then first have to determine symbolic dy-
namics for the orbits and one may do this by defining a
partition curve through the primary turning points, following
the idea of Grassberger and Kantz who used this kind of
partition for the He´non map@20#. From this pruning front it
will be possible to construct a Markov description of the
dynamics, either exact if one exists, or an approximation
@21#.

FIG. 9. The bifurcation curves in the plane (R,E) giving the
first bounded orbit and the border curves for the simple 232 Can-
tor set repellor,V050.1 anda51.

FIG. 10. The manifolds as one
changes the parameters in the area
between the 232 area and the
mixed 432 area, R52.5. ~a!
E50.013675, ~b! E50.013670,
~c! E50.013600, and~d! Poincare´
map showing a stable island
E50.013620.
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VII. ESCAPE RATES

The classical escape rate can be calculated for chaotic
repellors by using the thermodynamic formalism with dy-
namicalz functions. This is discussed in Refs.@22# and @7#.
With tp5egTp/uLpu wherep is the label of a primary peri-
odic orbit,Tp is the period of the orbit, andLp is the stability
of the orbit, we find the escape rateg from the zero points of
the function:

1/z512t02t12@~ t012t1t0!#2@~ t0012t01t0!

1~ t0112t01t1!#2@~ t00012t0t001!1~ t01112t011t1!

1~ t00112t001t12t0t0111t0t01t1!#2•••

512(
f
t f2(

n
cn . ~12!

In Eq. ~12! we get two contributions, which are calledfun-
damentaltermst f andcurvaturetermscn . The fundamental
terms are large and have to be included in the calculations.
The curvature terms are constructed such that eachcn @cor-
responding to a square bracket in Eq.~12!# includes a shad-
owing effect and the term is relatively small. The termscn
decrease fast with the lengthn and we include onlycn up to
a given maximum value ofn. In Table III some results are
given for the region of the chaotic binary repellor in the
three-Gaussian system. The escape rates are calculated for
different cycle lengthsn. We have done this up to cycle
lengthn54 and it converges fast. Table IV contains some
results for the binary repellor of two Gaussians and Table V
for the Lennard-Jones potential where we have used a similar
expansion of thez function with five symbols.

Escape rates can also be found by performing a numerical
experiment. The escape rateg is given by the exponential
decay of the number of trajectories remaining in the system.
We limit the system by making a border that is a circle
containing the chaotic repellor where the center of the circle
coincides with the center of the system. The exponential de-
cay can be calculated by starting a lot of trajectories ran-
domly and computing the flight time until the trajectory
leaves the system. We have done this in Fig. 11 for a binary
repellor of the three Gaussians and in Fig. 12 for the
Lennard-Jones potential in the case where the chaotic repel-
lor forms a 535 Cantor set. The slope of the straight line
drawn here is given by the escape rate gained by evaluating
thez function. The escape rates agree to the precision we get
for g for the numerical experiment. This gives a numerical
check of ourz-function calculations.

VIII. SEMICLASSICAL CALCULATIONS

Scattering potentials exhibiting rainbow singularities are
generic in atomic physics and we now want to demonstrate
how semiclassical resonances can be found@22,23#. We in-
vestigate the case in which the three Gaussians form a binary
chaotic repellor. Other chaotic repellors can be treated in the
same way.

We consider the system of three Gaussians when the cha-
otic repellor forms a 232 Cantor set. This is true for the
energy rangeEP@0.016,0.0247#, for R52.5. In this case the
symbolic description is complete with the alphabet$0,1%.

We have for the semiclassical calculations the same ex-
pansion as in~12! but with a differenttp ;

tp5
e~ i /\!Sp~E!2 ipmp/2

uLpu1/2
, ~13!

TABLE III. The escaperates for the three-Gaussian binary re-
pellor for different parameter values using the cycle expansion up to
the given length.

E R Length 1 Length 2 Length 3 Length 4

0.016 2.3 0.07274 0.07189 0.07301 0.07265
0.016 2.5 0.07740 0.07758 0.07795 0.07784
0.017 2.5 0.07788 0.07743 0.07800 0.07785
0.017 2.6 0.07953 0.07943 0.07978 0.07969
0.017 2.8 0.08176 0.08209 0.08220 0.08218
0.018 2.5 0.07796 0.07681 0.07762 0.07740
0.018 2.7 0.08096 0.08053 0.08091 0.08082
0.018 2.9 0.08268 0.08264 0.08281 0.08278
0.018 3.1 0.08350 0.08367 0.08374 0.08373

TABLE IV. The escaperates for the two-Gaussian binary repel-
lor for different parameter values using the cycle expansion up to
the given length.

E R Length 1 Length 2 Length 3 Length 4

0.016 2.5 0.09073 0.09062 0.09063 0.09063
0.017 2.5 0.09012 0.08971 0.08977 0.08976
0.018 2.5 0.08788 0.08708 0.08719 0.08717

TABLE V. The escape rates for the two Lennard-Jones poten-
tials.

E R Length 1 Length 2

1.9 10 0.646989 0.648509

FIG. 11. Exponential decay of the trajectories in the three-
Gaussian system,E50.016,R52.5. The slope of the straight line is
taken from Table III.
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whereSp(E) is the classical action andmp is the Maslov
index.

In a system of two degrees of freedom the Maslov index
is twice the number of times the stable and unstable mani-
folds wind around the periodic orbit@24#. In the chaotic bi-
nary repellor this number depends on the symbolic dynamics
in a simple way. Scattering outside the critical line (st50)
means that neighboring trajectories conserve their orienta-
tion, the stable and unstable manifold do not wind around the
periodic orbit. Scattering inside the critical line (st51)
means neighboring trajectories change their orientation, the
stable and unstable manifold wind half around the periodic
orbit. The Maslov indexmp for a periodic orbit of lengthn
with the symbolics1 ,s2 , . . . ,sn is then

mp5(
i51

n

si . ~14!

In chaotic systems like the hydrogen atom in magnetic
field @25# and the collinear helium atom@26# areSp(E) and
Lp(E) energy scaling functions. It is sufficient to calculate
the periodic orbit andSp(E) andLp(E) for one parameter
value ofE and then use scaling relations to obtain analytical
functionsSp(E) andLp(E). A Gaussian potential does not
have these scaling properties.

In order to find an expression forSp(E) andLp(E) we
have calculated periodic orbits, stability, action, and Maslov
indexes for energy values in the interval
EP@0.016,0.0247#, R52.5. We have approximatedSp(E)
and ln@Lp(E)# using polynomials of degree 5 inE for the
real energy and used these functions as the analytical con-
tinuation into the complex energy plane.

In our model system we have chosen atomic units and
consequently have\51. The semiclassicalz function do not

have any zeroes in the energy region 0.016,E,0.0247 for
R52.5 if we use\51. If we choose\50.05 we find two
resonances in this region,E50.01732 i0.00384 and
E50.02162 i0.00217.

Changing\ corresponds to choosing new parametersm̃,
Ṽ0, andẼ, which fulfill the scaling conditions of the Hamil-
tonian for the three Gaussians.

m̃Ṽ05V0 ,
Ẽ

Ṽ0

5
E

V0
~15!

and therefore do not change the dynamic and the stability of
the system. If we setm̃520 we find Ṽ0520.005 and
Ẽ5E/20. By usingdS5p(dq/dt)dt we get the scaling of
the action:S̃5Sm̃5S/0.05. Because of this thez function
remains the same if we use the new parameters in atomic
units instead of the old parameters with\50.05. The reso-
nances in the system with the new parameters are
Ẽ50.0008652 i0.000192 andẼ50.00108,2 i0.0001085.

The resonances here are well within the energy interval
without bifurcations and the imaginary part of the energy is
quite small so we do not expect that including complex pe-
riodic orbits ~ghost orbits! will significantly change the re-
sults. We have not calculated the resonances using quantum
mechanics, but from calculations in other systems we expect
the error to be relatively small.

IX. CONCLUSION

We have investigated a class of chaotic scattering Hamil-
tonian systems that is quite generic. The invariant structure
in these systems has been determined by finding an asymp-
totic limit and then identified the same structure for the more
complicated systems in a Poincare´ plane. For some examples
we have calculated periodic orbits and used these to find the
classical escape time and the quantum mechanical reso-
nances and demonstrated that this is possible for nontrivial
systems. When the energy is very small for the scattering
systems and for bounded systems of this type~double or
triple wells and possibly the He´non-Heiles potential!, the
structure of periodic orbits is very complicated and the meth-
ods applied here do not work directly. Further investigation
is required for making classical and semiclassical calcula-
tions in these systems, but the methods for analyzing these
have to be an extension of the methods used here.
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